
Vis Editor
Combining modal editing with structural regular expressions

Marc André Tanner

CoSin 2017, 17. May

Editor Lineage1

1966

1971

1974

1975

1976

1979

1987

1990

1991

1994

2010

2011

2014

...

QED

ed

sed

em

sam

ex

vi

stevie

elvis

acme

vis

vim

nvi

neovim

scintillua

kakoune sandy

1Wikipedia, vi family tree, editor history project

http://web.mit.edu/kolya/misc/txt/editors
https://github.com/mhinz/editor-history

TL;DR: What is this all about?

Demo

I https://asciinema.org/a/41361

I asciinema play ...

Modal Editing

I Most editors are optimized for insertion

I What about: navigation, repeated changes, reformatting etc.

I Different modes, reuse same keys for different functions

The vi(m) Grammar

Editing language based on:

I Operators (delete, change, yank, put, shift, ...)

I Counts

I Motions (start/end of next/previous word, ...)

I Text Objects (word, sentence, paragraph, block, ...)

I Registers

Demo: Motions and Text Objects

Motions

I Search regex /pattern

I Find character f{char}

I Match brace %

Text Objects

I Block a{

I Indentation i<Tab>

I Lexer Token ii

Structural Regular Expressions

The current UNIX® text processing tools are weakened
by the built-in concept of a line. There is a simple
notation that can describe the ‘shape’ of files when the
typical array-of-lines picture is inadequate. That notation
is regular expressions. Using regular expressions to
describe the structure in addition to the contents of files
has interesting applications, and yields elegant methods
for dealing with some problems the current tools handle
clumsily. When operations using these expressions are
composed, the result is reminiscent of shell pipelines.

Structural Regular Expressions, Rob Pike, 1987

http://doc.cat-v.org/bell_labs/structural_regexps/
http://doc.cat-v.org/bell_labs/structural_regexps/

sam(1) Grammar

Simple Addresses

I 0 and $

I n line n

I /regex/ and ?regex?

Compound Addresses

I a1+a2 evaluate a2 at end of a1

I a1-a2 evaluate a2 in reverse direction at beginning of a1

I a1,a2 from beginning of a1 to end of a2

sam(1) Grammar

Simple Addresses

I 0 and $

I n line n

I /regex/ and ?regex?

Compound Addresses

I a1+a2 evaluate a2 at end of a1

I a1-a2 evaluate a2 in reverse direction at beginning of a1

I a1,a2 from beginning of a1 to end of a2

Demo: Sam Addresses

I Select lines 13,15

I Extend selection by 2 lines .,+2

I Grow selection in both directions by 2 lines -2,+2

I Select first occurence in file 0+/Emacs/

I Select last occurence in file $-/Emacs/

I Select from first to last occurence in file
0+/Emacs/,$-/Emacs/

I Select second occurence from current position /Emacs/+//

sam(1) Grammar

Text Commands

I a/text/ append text after range

I i/text/ insert text before range

I c/text/ change text

I d delete range

I/O Commands

I | filter

I > pipe out

I < pipe in

I ! run

sam(1) Grammar

Text Commands

I a/text/ append text after range

I i/text/ insert text before range

I c/text/ change text

I d delete range

I/O Commands

I | filter

I > pipe out

I < pipe in

I ! run

sam(1) Grammar

Loops

I x/regex/ command

I y/regex/ command

Extract every match / non-match and run command

Conditionals

I g/regex/ command

I v/regex/ command

Run command on every match / non-match

Groups { ... }

I All commands operate on initial state

I Changes must be non-overlapping

sam(1) Grammar

Loops

I x/regex/ command

I y/regex/ command

Extract every match / non-match and run command

Conditionals

I g/regex/ command

I v/regex/ command

Run command on every match / non-match

Groups { ... }

I All commands operate on initial state

I Changes must be non-overlapping

sam(1) Grammar

Loops

I x/regex/ command

I y/regex/ command

Extract every match / non-match and run command

Conditionals

I g/regex/ command

I v/regex/ command

Run command on every match / non-match

Groups { ... }

I All commands operate on initial state

I Changes must be non-overlapping

sam(1) by Example

I Select all occurences x/pattern/

I Search and replace x/pattern/ c/replacement/

I Indent x/^/ i/\t/

I Deindent x/^\t/ d

I Lowercase x/Emacs/ x/E/ c/e/

I < seq 9, | sort -r, | fmt, | column -t, | tr a-z A-Z

I x/Emacs/ a/{TM}/

I x/Emacs/ /\{TM\}/ d

I x/Emacs/ { i/v/ d a/i/ }

I Swap Emacs and vi

x/\<(Emacs|vi)\>/ {

g/Emacs/ c/vi/

g/vi/ c/Emacs/

}

Multiple Selections

Selections as core primitives.

Cursors are singleton selections.

Encourage a more interactive workflow than macros.

Demo: Variable Renaming

I Select current word ⟨C-n⟩
I Find next match ⟨C-n⟩
I Skip unrelated match ⟨C-x⟩
I Find next match ⟨C-n⟩
I Remove last match ⟨C-p⟩
I Rename c

Demo: Argument Reordering

I Select argument list :x/\(.*\)/

I Ineractively adjust selections h, o, l

I Split arguments :y/,/

I Trim selections _

I Rotate selections + or -

Or in one go: :x/\(.*\)/ x/[a-z]+/

Demo: Commenting out Code

I Select lines using visual line mode V}h

I Create selection at start of every line I

I Enter insert mode and type text i#<Escape>

Alternatively: :x i/#/

Demo: Alignment

I Select block vi<Tab>

I Split words :x/\w+/

I Align columns <Tab>

I Drop first column <C-c> or :g%2

I Reduce selections <Escape>

I Move to brace f}

I Align <S-Tab>

Selections: Creation

I :x/regex/ and :y/regex/

I ⟨C-k⟩ and ⟨C-j⟩ line above/below

I ⟨C-n⟩ next match

I I and A in visual mode

Selections: Removal

I :g/regex/ and :v/regex/

I ⟨C-p⟩ remove

I ⟨C-x⟩ skip
I ⟨Escape⟩

Multiple Selections

I Navigation with ⟨C-d⟩ and ⟨C-u⟩
I Rotation + and -

I Alignment ⟨Tab⟩ and ⟨S-Tab⟩
I Trim white space

Selections: Manipulation through Registers

Save (s) and Restore (S) selections to/from registers.

I Union |

I Intersection &

I Complement !

I Minus \

I Pairwise Combine (z|, z&, z<, z>, z+, z-)

Demo: Selection Combination

DEMO

Lua as a Scripting Language

I Portable, powerful, efficient, lightweight, embeddable scripting
language with support for higher order functions, closures,
coroutines, ...

I No special purpose configuration file format/parser necessary

I Execute ~/.config/vis/visrc.lua during start up

function win_open(win)

-- Your per window configuration options e.g.

vis:command("set number")

end

vis.events.subscribe(vis.events.WIN_OPEN , win_open)

Lua Plugin API

User definable:

I Key mappings

I Operators

I Motions

I Text Objects

I :-commands

I ...

Lua Plugin API Example

vis:operator_new("gq", function(file , range , pos)

local ok, out , err = vis:pipe(file , range , "fmt")

if not ok then

vis:info(err)

else

file:delete(range)

file:insert(range.start , out)

end

return range.start -- new cursor location

end , "Formatting operator , using fmt (1)")

LPeg based Syntax Highlighting

Parsing Expression Grammars (PEGs)

I More expressive than pure regular expressions

I Share similarities with CFGs

I Unifies scanning and parsing

I Closed under union, intersection, complement

LPeg

I Lua implementation using a virtual parsing machine

I Backtracking may be exponential for some patterns

I Reuse ≈ 130 existing lexers from Scintillua project

https://foicica.com/scintillua/

Design Philosophy2

I Leverage external tools (UNIX as IDE)

I Keep things simple, robust and fast

I Portable, lightweight, easily deployable

2Some of those are contradictory

Implementation

I ≈ 20K SLOC, standard compliant C99 editor core

I Lua used for run time configuration and in-process scripting

I man pages in mdoc(7) format

I ISC licensed

Future Plans

I Lua API Improvements

I Asynchronous Jobs/Events

I Quickfix functionality

I Alternative Text Management Data structures

I Client/Server architecture

I RPC interface

I Language Server Protocol support

I ...

Your Help Wanted!

I C hackers

I Lua developers (plugin API, syntax lexers, ...)

I Power users (testing/fuzzing infrastructure)

I Artists (color themes, logo, homepage, ...)

I Technical writers (documentation etc)

I Distribution packagers (OpenBSD, Fedora, openSUSE,
macOS, ...)

Conclusion

Not just a vi(m) clone!

Powerful combination of:

I vi(m)’s modal editing

I sam’s structural regular expressions

I selection manipulation primitives

Solid base suitable for experimentation with new ideas.

Questions?

https://github.com/martanne/vis

git://repo.or.cz/vis.git

mat@brain-dump.org

#vis-editor on freenode

Happy Hacking!

https://github.com/martanne/vis

Changes compared to sam(1)

I Interactive refinements

I Multiple dots (a.k.a selections)

I More compact syntax
x/Emacs/ { i/>/ a/</ }

I Relaxed ordering requirements of changes
x/Emacs/ { d i/V/ a/i/ }

I Different regex anchor behavior
x/[A-Za-z]+/ g/^i$/ c/I/

Changes compared to sam(1)

I Substitute command removed in favor of:
x/regex/ c/replacement/

I Sub expression match references \1 - \9 and &

x/Emacs/ c/>&</

I Count specifier for g and v commands
g1/regex/ v1/regex/

g%2/regex/ v%2/regex/

g-1/regex/ v-1/regex/

I Tab character in text specifiers \t

I No mouse support!

