Addressing

The underlying abstraction is a byte stream addressed by positions
from the set:
P={p|0<p<size} C Ny

In slight abuse of notation we define for s, e € P
{peP|s<p<e} ifs<e

[s,e) =<s ifs=e

1) otherwise

Resulting in the set of ranges

R =/{[s,e)|s,eecP,s<e}

Selections

Selections are non-empty, directed ranges
S=Rx{+,|,—}
Forming a totally ordered set (S, <), according to:
([s1,€1),d1) < ([s2;&),db) <= si<sx:V(si=s2Ne1 < &)

An invalid selection is denoted by (0, -)

Selections: Membership, Length and Direction

A selection s = (r,d) € S

>

>

>

>

contains peP <= per.

has length |s| = |r]|

is anchored and left extending if d = +

is non-anchored or following if d = |, this implies |s| =1
is anchored and right extending if d = —

can be flipped

(r,—) ifd=+«
flip(s) =<('s ifd=1,
(r,«) ifd=—

Selections: Cursor and Anchor

Each selection has 2 end points, cursor and anchor, which are over
a character.

S§—P

e—1 ifd=—
s otherwise
e—1 ifd=«

S otherwise

cursor: ([s,e),d) — {

anchor: ([s, e),d) — {

For singleton selections both cursor and anchor are on the same
character.

Selections: Motions

» Normal mode

Non-anchored singleton selections ([p, p + 1),]) for cursor at
peP.

» Visual mode

Selections are anchored, only the cursor is adjusted, the
anchor remains fixed.

Selections: Cover and Normalization
The cover of SC S is

cover: 28 — 2P
cover(S)={peP|(r,d)eS,per}

We define a normalization operator on a set of selections:
normalize: 25 — 25

such that:
1. (0,-) ¢ normalize(S)
2. cover(normalize(S)) = cover(S)
3.V =(n,d1),2=(n,db)eS:s1#5 = nNrn=>_

4. Vs = (rl, dl) €S:
(Vso = (r,d2) € S\{s1} : nNrn=0) = s; € normalize(S)

A normalized selection set is an interval order.

Selections: Intersect and Union

Operations on ordered sets of selections, 51,5 C S

> intersect

S1N S ={(s1Ns2,d1) | (51,d1) € S1,(s2,d2) € S2}

note: not symmetric

> union

S51US = normalize(51 U 52)

Selections: Complement and Minus

» complement

> minus

These behave as "expected”.

TODO: define them formally

Selections: Pairwise Merge

Pairwise merge with f: S xS — S

merge(Sy, S2) = {f(uj,vi) | 1 <+ < up € S,vi <+ < v € S}

i.e. start with the minimum and repeatedly combine the immediate
successor of both sets.

>

>

>

>

union(([s1, e1), d1), ([s2, €2), d2)) = ([min(s1, 52), max(ey, €)), d1)
intersect(([s1, 1), d1), ([s2, €2), d2)) = ([max(s1,s2), min(er, &2)), d1)
left(sy, s2) = min(sy, s2)

right(s1, s2) = max(s1, s2)

s1 if |s1| > |sp]

s, otherwise

longer(sy, s2) = {

S1 if |51| < |52|

shorter(sy, sp) = .
s, otherwise

