
Addressing

The underlying abstraction is a byte stream addressed by positions
from the set:

P = {p | 0 ≤ p ≤ size} ⊂ N0

In slight abuse of notation we define for s, e ∈ P

[s, e) =


{p ∈ P | s ≤ p < e} if s < e

s if s = e

∅ otherwise

Resulting in the set of ranges

R = {[s, e) | s, e ∈ P, s < e}

Selections

Selections are non-empty, directed ranges

S = R× {←, ↓,→}

Forming a totally ordered set 〈S,≤〉, according to:

([s1, e1), d1) ≤ ([s2, e2), d2) ⇐⇒ s1 < s2 ∨ (s1 = s2 ∧ e1 ≤ e2)

An invalid selection is denoted by (∅, ·)

Selections: Membership, Length and Direction

A selection s = (r , d) ∈ S
I contains p ∈ P ⇐⇒ p ∈ r .

I has length |s| = |r |
I is anchored and left extending if d = ←
I is non-anchored or following if d = ↓, this implies |s| = 1

I is anchored and right extending if d = →
I can be flipped

flip(s) =


(r ,→) if d = ←
s if d = ↓
(r ,←) if d = →

Selections: Cursor and Anchor

Each selection has 2 end points, cursor and anchor, which are over
a character.

S → P

cursor : ([s, e), d) 7→

{
e − 1 if d = →
s otherwise

anchor : ([s, e), d) 7→

{
e − 1 if d = ←
s otherwise

For singleton selections both cursor and anchor are on the same
character.

Selections: Motions

I Normal mode

Non-anchored singleton selections ([p, p + 1), ↓) for cursor at
p ∈ P.

I Visual mode

Selections are anchored, only the cursor is adjusted, the
anchor remains fixed.

Selections: Cover and Normalization

The cover of S ⊆ S is

cover : 2S → 2P

cover(S) = {p ∈ P | (r , d) ∈ S , p ∈ r}

We define a normalization operator on a set of selections:

normalize : 2S → 2S

such that:

1. (∅, ·) /∈ normalize(S)

2. cover(normalize(S)) = cover(S)

3. ∀s1 = (r1, d1), s2 = (r2, d2) ∈ S : s1 6= s2 =⇒ r1 ∩ r2 = ∅
4. ∀s1 = (r1, d1) ∈ S :

(∀s2 = (r2, d2) ∈ S \{s1} : r1∩ r2 = ∅) =⇒ s1 ∈ normalize(S)

A normalized selection set is an interval order.

Selections: Intersect and Union

Operations on ordered sets of selections, S1,S2 ⊆ S
I intersect

S1 ∩ S2 = {(s1 ∩ s2, d1) | (s1, d1) ∈ S1, (s2, d2) ∈ S2}

note: not symmetric

I union

S1 ∪ S2 = normalize(S1 ∪ S2)

Selections: Complement and Minus

I complement

I minus

These behave as ”expected”.

TODO: define them formally

Selections: Pairwise Merge

Pairwise merge with f : S × S → S

merge(S1,S2) = {f(ui , vi) | u1 < · · · < un ∈ S1, v1 < · · · < vm ∈ S2}

i.e. start with the minimum and repeatedly combine the immediate
successor of both sets.

I union(([s1, e1), d1), ([s2, e2), d2)) = ([min(s1, s2),max(e1, e2)), d1)

I intersect(([s1, e1), d1), ([s2, e2), d2)) = ([max(s1, s2),min(e1, e2)), d1)

I left(s1, s2) = min(s1, s2)

I right(s1, s2) = max(s1, s2)

I longer(s1, s2) =

{
s1 if |s1| > |s2|
s2 otherwise

I shorter(s1, s2) =

{
s1 if |s1| < |s2|
s2 otherwise

