
abduco & dvtm
Session and Tiling Window Management for the Console

Marc André Tanner

CoSin ’18

Oberon

Acme

X11: wmi, wmii, dwm

TL;DR: What is this all about?

Provide a similiar working environment suitable for:
I Framebuffer console
I Remote e.g. SSH/mosh sessions

abduco
I session persistence

dvtm
I tiling window management for the console
I terminal multiplexer

TL;DR: What is this all about?

Provide a similiar working environment suitable for:
I Framebuffer console
I Remote e.g. SSH/mosh sessions

abduco
I session persistence

dvtm
I tiling window management for the console
I terminal multiplexer

TL;DR: What is this all about?

Provide a similiar working environment suitable for:
I Framebuffer console
I Remote e.g. SSH/mosh sessions

abduco
I session persistence

dvtm
I tiling window management for the console
I terminal multiplexer

Tiling window management

I Optimally use available screen space
I No overlapping windows
I Automatic window placement
I Minimal window decorations

dvtm – dynamic virtual terminal manager

From: Marc Andre Tanner <mat@brain -dump.org >
Date: Sat , 8 Dec 2007 13:29:30 +0100
To: dwm@suckless .org
Subject : [ANNOUNCE] dvtm - dynamic virtual terminal

manager - aka dwm for the console

Hi ,

For some time I have been thinking about applying
the concept of tiling window management to the
console . As a result I have written dvtm , you can
check it out here:

http :// www.brain -dump.org/ projects /dvtm/

...

Concepts shared with dwm

I window management should be automatic and dynamic
I master and stacking area
I tagging concept
I similar key bindings, MOD defaults to Ctrl-g
I 1-line statusbar (via a named pipe)
I configuration through config.def.h

Design Philosophy

Heavily influenced by suckless.org.

Focus on simplicity, clarity and frugality, minimal but useable, do
one thing and do it well.
I dynamic window management for the console
I no internal copy mode (use $EDITOR instead)
I no session support (see abduco)
I easily scriptable

dvtm – dynamic virtual terminal manager

Single modifier key, prefix for all commands

Denoted by $MOD, defaults to ⟨C-g⟩

Can be changed at runtime:
I dvtm -m ^a (⟨C-a⟩ as in screen)
I dvtm -m ^b (⟨C-b⟩ as in tmux)

Use $MOD-$MOD to send the $MOD key.

dvtm – dynamic virtual terminal manager

Single modifier key, prefix for all commands

Denoted by $MOD, defaults to ⟨C-g⟩

Can be changed at runtime:
I dvtm -m ^a (⟨C-a⟩ as in screen)
I dvtm -m ^b (⟨C-b⟩ as in tmux)

Use $MOD-$MOD to send the $MOD key.

dvtm – window lifecycle

I dvtm process1 process2 ...
I $MOD-c create new window
I $MOD-C create new window with same working directory1

I $MOD-x-x close window
Closing the last window, terminates dvtm.

1Depends on /proc/$PID/cwd

dvtm – focus windows

I $MOD-j focus next
I $MOD-k focus previous
I $MOD-J focus next non-minimized
I $MOD-K focus previous non-minimized
I $MOD-[0..9] focus n-th window
I $MOD-⟨Tab⟩ focus previously selected window

dvtm – master and stacking area

Available space is split into two areas:
I master: the primary window(s)
I stacking: the other windows

dvtm – change master area

I $MOD-⟨Enter⟩ swap current window to/from master area

I $MOD-l increase master area width
I $MOD-h decrease master area width
I $MOD-i increase number of windows in master area
I $MOD-d decrease number of windows in master area

dvtm – change master area

I $MOD-⟨Enter⟩ swap current window to/from master area
I $MOD-l increase master area width
I $MOD-h decrease master area width

I $MOD-i increase number of windows in master area
I $MOD-d decrease number of windows in master area

dvtm – change master area

I $MOD-⟨Enter⟩ swap current window to/from master area
I $MOD-l increase master area width
I $MOD-h decrease master area width
I $MOD-i increase number of windows in master area
I $MOD-d decrease number of windows in master area

dvtm – minimize/maximize windows

I $MOD-. toggle minimization of current window
I $MOD-m maximize current window

dvtm – layouts

A way to place/display windows.

$MOD-⟨Space⟩ cycles through layouts.

I $MOD-f Vertical stack (default)
I $MOD-b Bottom stack
I $MOD-g Grid
I $MOD-m Monocle/fullscreen

Also included in source tarball, but disabled by default:
I Top stack
I Vertical stack
I Fibonacci: spiral & dwindle

dvtm – layouts

A way to place/display windows.

$MOD-⟨Space⟩ cycles through layouts.

I $MOD-f Vertical stack (default)
I $MOD-b Bottom stack
I $MOD-g Grid
I $MOD-m Monocle/fullscreen

Also included in source tarball, but disabled by default:
I Top stack
I Vertical stack
I Fibonacci: spiral & dwindle

dvtm – layouts

A way to place/display windows.

$MOD-⟨Space⟩ cycles through layouts.

I $MOD-f Vertical stack (default)
I $MOD-b Bottom stack
I $MOD-g Grid
I $MOD-m Monocle/fullscreen

Also included in source tarball, but disabled by default:
I Top stack
I Vertical stack
I Fibonacci: spiral & dwindle

dvtm – tagging concept

Controls which windows are displayed.

A super set of the workspace functionality.

A static set of tags = {tag1, tag2, . . . , tagN}

Every window is tagged with at least one tag.

A view is a subset of tags i.e. (views ⊆ tags)

A view displays all windows having at least one of the tags.

dvtm – tagging concept

Controls which windows are displayed.

A super set of the workspace functionality.

A static set of tags = {tag1, tag2, . . . , tagN}

Every window is tagged with at least one tag.

A view is a subset of tags i.e. (views ⊆ tags)

A view displays all windows having at least one of the tags.

dvtm – tagging concept

Controls which windows are displayed.

A super set of the workspace functionality.

A static set of tags = {tag1, tag2, . . . , tagN}

Every window is tagged with at least one tag.

A view is a subset of tags i.e. (views ⊆ tags)

A view displays all windows having at least one of the tags.

dvtm – tagging modifiing the view

View tag: display all windows with tagN, "change workspace"
I $MOD-v-N

Toggle tag of view: add/remove all windows with tagN
I $MOD-V-N

dvtm – tagging modifiing the view

View tag: display all windows with tagN, "change workspace"
I $MOD-v-N

Toggle tag of view: add/remove all windows with tagN
I $MOD-V-N

dvtm – tagging windows

Tag window: apply tagN to focused window, "move window to
workspace"
I $MOD-t-N

Toggle tag of window: add/remove tagN from focused window
I $MOD-T-N

dvtm – tagging windows

Tag window: apply tagN to focused window, "move window to
workspace"
I $MOD-t-N

Toggle tag of window: add/remove tagN from focused window
I $MOD-T-N

dvtm – miscellaneous tagging

$MOD-v-⟨Tab⟩ switch to previously selected tags

$MOD-0 view all tags / windows

dvtm – status bar

Hidden by default.

Displays a single line of text, read from a FIFO:

I mkfifo -m 600 dvtm.status
I dvtm -s dvtm.status
I echo "your fancy status" > dvtm.status

See dvtm-status(1) for an extended example

$MOD-s toggles status bar

$MOD-S cylces position (top, bottom)

dvtm – status bar

Hidden by default.

Displays a single line of text, read from a FIFO:

I mkfifo -m 600 dvtm.status
I dvtm -s dvtm.status
I echo "your fancy status" > dvtm.status

See dvtm-status(1) for an extended example

$MOD-s toggles status bar

$MOD-S cylces position (top, bottom)

dvtm – status bar

Hidden by default.

Displays a single line of text, read from a FIFO:

I mkfifo -m 600 dvtm.status
I dvtm -s dvtm.status
I echo "your fancy status" > dvtm.status

See dvtm-status(1) for an extended example

$MOD-s toggles status bar

$MOD-S cylces position (top, bottom)

dvtm – scrollback buffer

Enhances terminals like st(1) with a scroll back buffer.
I Set history size: dvtm -h lines
I ⟨S-PageUp⟩ or $MOD+⟨PageUp⟩ scroll up
I ⟨S-PageDown⟩ or $MOD+⟨PageDown⟩ scroll down

dvtm – keyboard multiplexing

Keypresses are forwarded to all visible windows.

Useful to interactively manage multiple servers.
I $MOD-a toggles multiplexing mode

dvtm – copymode

Copy and paste text across windows.

I uses your $EDITOR as interactive filter
I pipes scroll back buffer history to editor
I keeps whatever the editor writes to stdout in a register
I dvtm-editor(1) makes it work for ordinary $EDITORs

I $MOD-e enter copy mode
I $MOD-p paste previously copied text

dvtm – copymode

Copy and paste text across windows.

I uses your $EDITOR as interactive filter
I pipes scroll back buffer history to editor
I keeps whatever the editor writes to stdout in a register
I dvtm-editor(1) makes it work for ordinary $EDITORs

I $MOD-e enter copy mode
I $MOD-p paste previously copied text

dvtm – window title

Xterm terminal escape sequence extension:

$ printf "\033]0;%s\007" "Your title here!"

See also dvtm-title(1)

dvtm – urgent flag

Titlebar (or tagbar) indication that "something" occured in the
window.

Triggered by ASCII bell character \a.

dvtm – mouse support

Click to focus window.

Double click to focus and toggle maximization.

Middle click to zoom.

Rright click to minimize.

dvtm – scripting capabilities

Control dvtm from other processes.

Reads commands from a named pipe.

I dvtm -c dvtm-command.fifo
I echo "create vis" > dvtm-command.fifo
I $DVTM_CMD_FIFO exposed to child processes

Only unidirectional communication.

Still limited and experimental.

dvtm – scripting capabilities

Control dvtm from other processes.

Reads commands from a named pipe.

I dvtm -c dvtm-command.fifo
I echo "create vis" > dvtm-command.fifo
I $DVTM_CMD_FIFO exposed to child processes

Only unidirectional communication.

Still limited and experimental.

dvtm – scripting capabilities

Control dvtm from other processes.

Reads commands from a named pipe.

I dvtm -c dvtm-command.fifo
I echo "create vis" > dvtm-command.fifo
I $DVTM_CMD_FIFO exposed to child processes

Only unidirectional communication.

Still limited and experimental.

abduco: session handling

I Provides session persistence
I terminate stuck SSH sessions ⟨Enter⟩ ˜ .
I ssh user@host -t abduco -A session

I Simple client/server architecture
I Communication over Unix domain socket

I Operates on the raw I/O stream
I Does not attempt to interpret or preserve terminal state

abduco: session handling

I Provides session persistence
I terminate stuck SSH sessions ⟨Enter⟩ ˜ .
I ssh user@host -t abduco -A session

I Simple client/server architecture
I Communication over Unix domain socket

I Operates on the raw I/O stream
I Does not attempt to interpret or preserve terminal state

abduco: session handling

I Provides session persistence
I terminate stuck SSH sessions ⟨Enter⟩ ˜ .
I ssh user@host -t abduco -A session

I Simple client/server architecture
I Communication over Unix domain socket

I Operates on the raw I/O stream
I Does not attempt to interpret or preserve terminal state

abduco: basic usage

Create session (and attach)
I abduco -c demo

Detach session
I ⟨Ctrl-\⟩

Reattach session
I abduco -a demo

abduco: basic usage

Create session (and attach)
I abduco -c demo

Detach session
I ⟨Ctrl-\⟩

Reattach session
I abduco -a demo

abduco: basic usage

Create session (and attach)
I abduco -c demo

Detach session
I ⟨Ctrl-\⟩

Reattach session
I abduco -a demo

abduco: session list

$ abduco
Active sessions (on host thinkpad)
* Sat 2018 -06 -16 20:40:36 27492 connected

Sat 2018 -06 -16 20:39:49 27414 inactive
+ Sat 2018 -06 -16 20:40:13 27487 dead

Column meaning:
1. Status, * active / client connected, + terminated
2. Last activity (mtime of socket)
3. Server PID
4. Session name

abduco: session list

$ abduco
Active sessions (on host thinkpad)
* Sat 2018 -06 -16 20:40:36 27492 connected

Sat 2018 -06 -16 20:39:49 27414 inactive
+ Sat 2018 -06 -16 20:40:13 27487 dead

Column meaning:
1. Status, * active / client connected, + terminated
2. Last activity (mtime of socket)
3. Server PID
4. Session name

abduco: session exit status

No output buffering, but exit status is recorded.

$ abduco -n demo false && abduco -a demo
abduco : demo: session terminated

with exit status 1

abduco: shared sessions

Multiple simultaneously connected clients.
I Most recently non-readonly client dictates pty size
I Read only sessions (input is discarded)
I For security purposes, use socat(1)

$ socat -u unix-connect:/tmp/abduco/private/session

unix-listen:/tmp/abduco/public/read-only &

abduco: resize handling

Most recently non-readonly client dictates pty(7) size.

Delivers SIGWINCH to underlying process.

abduco: socket recreation

In case session socket disappears:
I pgrep -P 1 abduco
I lsof -p $PID | grep unix
I kill -USR1 $PID
I cp /proc/$PID/exe abduco
I ./abduco

abduco: environment variables

Command to run, if omitted:
I $ABDUCO_CMD defaults to dvtm

Current session information:
I $ABDUCO_SESSION
I $ABDUCO_SOCKET

Limitations & a plan to fix them

Terminal state not preserved across sessions

Possible fix:
1. session attached
2. abduco sends signal to supervised application (i.e. dvtm)
3. dvtm restores terminal state

Future Plans2

I Find more time for maintenance

I Preserve terminal state across sessions

I Improve terminal emulation
I 24 bit color support
I dvtm ≈ dwm + st ?
I dvtm ≈ libvterm + libtickit ?

2In no particular order, no timeline given.

Future Plans

I Improve scripting capabilities, allow bidirectional
communication via a unix domain socket

$ echo cmd | socat - UNIX-CONNECT:/tmp/socket | doit

I Provide Lua API?

I Resolve abduco license controversy

Conclusion

Does not conflate session and window managment.

Allthough raw edges, conceptually sound.

Non-bloated solution which works (at least for my usecase).

Questions?

https://github.com/martanne/abduco
https://github.com/martanne/dvtm

git://repo.or.cz/abduco.git
git://repo.or.cz/dvtm.git

mat@brain-dump.org

#vis-editor on freenode

Happy Hacking!

https://github.com/martanne/abduco
https://github.com/martanne/dvtm

